Uniqueness of Factoring an Integer and Multiplicative Group Z/pZ*
نویسندگان
چکیده
In the [20], it had been proven that the Integers modulo p, in this article we shall refer as Z/pZ, constitutes a field if and only if p is a prime. Then the prime modulo Z/pZ is an additive cyclic group and Z/pZ∗ = Z/pZ\{0} is a multiplicative cyclic group, too. The former has been proven in the [23]. However, the latter had not been proven yet. In this article, first, we prove a theorem concerning the LCM to prove the existence of primitive elements of Z/p∗. Moreover we prove the uniqueness of factoring an integer. Next we define the multiplicative group Z/pZ∗ and prove it is cyclic.
منابع مشابه
Properties of Primes and Multiplicative Group of a Field
In the [16] has been proven that the multiplicative group Z/pZ∗ is a cyclic group. Likewise, finite subgroup of the multiplicative group of a field is a cyclic group. However, finite subgroup of the multiplicative group of a field being a cyclic group has not yet been proven. Therefore, it is of importance to prove that finite subgroup of the multiplicative group of a field is a cyclic group. M...
متن کاملBounds for multiplicative cosets over fields of prime order
Let m be a positive integer and suppose that p is an odd prime with p ≡ 1 mod m. Suppose that a ∈ (Z/pZ)∗ and consider the polynomial xm − a. If this polynomial has any roots in (Z/pZ)∗, where the coset representatives for Z/pZ are taken to be all integers u with |u| < p/2, then these roots will form a coset of the multiplicative subgroup μm of (Z/pZ)∗ consisting of the mth roots of unity mod p...
متن کاملRESOLUTION METHOD FOR MIXED INTEGER LINEAR MULTIPLICATIVE-LINEAR BILEVEL PROBLEMS BASED ON DECOMPOSITION TECHNIQUE
In this paper, we propose an algorithm base on decomposition technique for solvingthe mixed integer linear multiplicative-linear bilevel problems. In actuality, this al-gorithm is an application of the algorithm given by G. K. Saharidis et al for casethat the rst level objective function is linear multiplicative. We use properties ofquasi-concave of bilevel programming problems and decompose th...
متن کاملFactoring Polynomials over Special Finite Fields
We exhibit a deterministic algorithm for factoring polynomials in one variable over "nite "elds. It is e$cient only if a positive integer k is known for which ' k (p) is built up from small prime factors; here ' k denotes the kth cyclotomic polynomial, and p is the characteristic of the "eld. In the case k"1, when ' k (p)"p!1, such an algorithm was known, and its analysis required the generaliz...
متن کاملSymbolic Arithmetic and Integer Factorization
In this paper, we create a systematic and automatic procedure for transforming the integer factorization problem into the problem of solving a system of Boolean equations. Surprisingly, the resulting system of Boolean equations takes on a ”life of its own” and becomes a new type of integer, which we call a generic integer. We then proceed to use the newly found algebraic structure of the ring o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Formalized Mathematics
دوره 16 شماره
صفحات -
تاریخ انتشار 2008